Assignment no 03: Chapter 3

Note: You can check the exercises after the book Chapter.
In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

Problems

3.1. A number of discrete-time systems are specified below in terms of their input-output relationships. For each case determine if the system is linear and/or time-invariant.
a. $\quad y[n]=x[n] u[n]$
c. $y[n]=3 x[n]+5 u[n]$
e. $y[n]=\cos (0.2 \pi n) x[n]$
f. $y[n]=x[n]+3 x[n-1]$
3.2. Determine if the system is linear or not.
b. $y[n]=\sum_{k=0}^{n} x[k]$
3.3. Consider the cascade combination of two systems shown in Fig. P.3.3(a).

Figure P. 3.3
a. Let the input-output relationships of the two subsystems be given as

$$
\operatorname{Sys}_{1}\{x[n]\}=3 x[n] \quad \text { and } \quad \operatorname{Sys}_{2}\{w[n]\}=w[n-2]
$$

Write the relationship between $x[n]$ and $y[n]$.
b. Let the order of the two subsystems be changed as shown in Fig. P.3.3(b).

Write the relationship between $x[n]$ and $\bar{y}[n]$.
Does changing the order of two subsystems change the overall input-output relationship of the system?
3.5. The response of a linear and time-invariant system to the input signal $x[n]=\delta[n]$ is given by

$$
\operatorname{Sys}\{\delta[n]\}=\{\underset{\substack{\uparrow=0}}{2}, 1,-1\}
$$

Determine the response of the system to the following input signals:
a. $x[n]=\delta[n]+\delta[n-1]$
b. $x[n]=\delta[n]-2 \delta[n-1]+\delta[n-2]$
c. $\quad x[n]=u[n]-u[n-5]$
3.7. The discrete-time signal is used as input to a length- 2 moving average filter.

$$
x[n]=\left\{\underset{\substack{\uparrow \\ n=0}}{\left.1_{\underset{\sim}{x}}, 2.3,3.1,3.3,3.7,2.9,2.2,1.4,0.6,-0.2,0.4\right\}}\right.
$$

Determine the response $y[n]$ for $n=0, \ldots, 9$. Use $x[-1]=0$.
3.25. For each system described below, determine whether the system is causal and/or stable.
a. $y[n]=\operatorname{Sys}\{x[n]\}=\sum_{k=-\infty}^{n} x[k]$
c. $y[n]=\operatorname{Sys}\{x[n]\}=\sum_{k=0}^{n} x[k] \quad$ for $n \geq 0$
e. $y[n]=\operatorname{Sys}\{x[n]\}=\sum_{k=n-10}^{n+10} x[k]$

Examples

Example 3.19: A discrete-time system is described through the impulse response

$$
h[n]=\{\underset{n=0}{4}, 3,2,1\}
$$

Use the convolution operation to find the response of the system to the input signal

$$
x[n]=\{\underset{\substack{\uparrow \\ n=0}}{-3}, 7,4\}
$$

