CSx25: Digital Signal Processing NCS224: Signals and Systems

Assignment no 03: Chapter 3

Note: You can check the exercises after the book Chapter. In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

Problems

3.1. A number of discrete-time systems are specified below in terms of their input-output relationships. For each case **determine** if the system is linear and/or time-invariant.

a.
$$y[n] = x[n] u[n]$$

c. $y[n] = 3 x[n] + 5 u[n]$
e. $y[n] = \cos(0.2\pi n) x[n]$
f. $y[n] = x[n] + 3 x[n-1]$

3.2. Determine if the system is linear or not.

b.
$$y[n] = \sum_{k=0}^{n} x[k]$$

3.3. Consider the cascade combination of two systems shown in Fig. P.3.3(a).

Figure P. 3.3

a. Let the input-output relationships of the two subsystems be given as

$$Sys_1 \{x[n]\} = 3 x[n]$$
 and $Sys_2 \{w[n]\} = w[n-2]$

Write the relationship between x[n] and y[n].

b. Let the order of the two subsystems be changed as shown in Fig. P.3.3(b).

Write the relationship between x[n] and $\overline{y}[n]$.

Does changing the order of two subsystems change the overall input-output relationship of the system?

3.5. The response of a linear and time-invariant system to the input signal $x[n] = \delta[n]$ is given by

$$\operatorname{Sys}\left\{\delta[n]\right\} = \left\{ \begin{array}{c} 2\\ \uparrow\\ n=0 \end{array}, 1, -1 \right\}$$

Determine the response of the system to the following input signals:

- **a.** $x[n] = \delta[n] + \delta[n-1]$
- **b.** $x[n] = \delta[n] 2\delta[n-1] + \delta[n-2]$
- c. x[n] = u[n] u[n-5]

3.7. The discrete-time signal is used as input to a length-2 moving average filter.

$$x[n] = \{ \underset{\substack{n=0 \\ n=0}}{1.7}, 2.3, 3.1, 3.3, 3.7, 2.9, 2.2, 1.4, 0.6, -0.2, 0.4 \}$$

Determine the response y[n] for n = 0, ..., 9. Use x[-1] = 0.

3.25. For each system described below, **determine** whether the system is causal and/or stable.

a.
$$y[n] = \text{Sys} \{x[n]\} = \sum_{k=-\infty}^{n} x[k]$$

c. $y[n] = \text{Sys} \{x[n]\} = \sum_{k=0}^{n} x[k] \text{ for } n \ge 0$
e. $y[n] = \text{Sys} \{x[n]\} = \sum_{k=n-10}^{n+10} x[k]$

Examples

Example 3.19: A discrete-time system is described through the impulse response

$$h[n] = \{ \underset{\substack{\uparrow \\ n=0}}{4}, 3, 2, 1 \}$$

Use the convolution operation to find the response of the system to the input signal

$$x[n] = \{ -3, 7, 4 \}$$